Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Single-atom catalysts (SACs) offer efficient metal utilization and distinct reactivity compared to supported metal nanoparticles. Structure-function relationships for SACs often assume that active sites have uniform coordination environments at particular binding sites on support surfaces. Here, we investigate the distribution of coordination environments of Pt SAs dispersed on shape-controlled anatase TiO2supports specifically exposing (001) and (101) surfaces. Pt SAs on (101) are found on the surface, consistent with existing structural models, whereas those on (001) are beneath the surface after calcination. Pt SAs under (001) surfaces exhibit lower reactivity for CO oxidation than those on (101) surfaces due to their limited accessibility to gas phase species. Pt SAs deposited on commercial-TiO2are found both at the surface and in the bulk, posing challenges to structure-function relationship development. This study highlights heterogeneity in SA coordination environments on oxide supports, emphasizing a previously overlooked consideration in the design of SACs.more » « less
-
Abstract. Plankton form the base of the marine food web and are sensitive indicatorsof environmental change. Plankton time series are therefore an essentialpart of monitoring progress towards global biodiversity goals, such as theConvention on Biological Diversity Aichi Targets, and for informingecosystem-based policy, such as the EU Marine Strategy Framework Directive.Multiple plankton monitoring programmes exist in Europe, but differences insampling and analysis methods prevent the integration of their data,constraining their utility over large spatio-temporal scales. The PlanktonLifeform Extraction Tool brings together disparate European planktondatasets into a central database from which it extracts abundancetime series of plankton functional groups, called “lifeforms”, according toshared biological traits. This tool has been designed to make complexplankton datasets accessible and meaningful for policy, public interest, andscientific discovery. It allows examination of large-scale shifts inlifeform abundance or distribution (for example, holoplankton beingpartially replaced by meroplankton), providing clues to how the marineenvironment is changing. The lifeform method enables datasets with differentplankton sampling and taxonomic analysis methodologies to be used togetherto provide insights into the response to multiple stressors and robustpolicy evidence for decision making. Lifeform time series generated with thePlankton Lifeform Extraction Tool currently inform plankton and food webindicators for the UK's Marine Strategy, the EU's Marine Strategy FrameworkDirective, and for the Convention for the Protection of the MarineEnvironment of the North-East Atlantic (OSPAR) biodiversity assessments.The Plankton Lifeform Extraction Tool currently integrates 155 000 samples,containing over 44 million plankton records, from nine different planktondatasets within UK and European seas, collected between 1924 and 2017.Additional datasets can be added, and time series can be updated. The PlanktonLifeform Extraction Tool is hosted by The Archive for Marine Species andHabitats Data (DASSH) at https://www.dassh.ac.uk/lifeforms/ (last access: 22 November 2021, Ostle et al., 2021). The lifeform outputs are linked to specific, DOI-ed, versions of thePlankton Lifeform Traits Master List and each underlying dataset.more » « less
-
Abstract Understanding the growth pathway of faceted alloy nanoparticles at the atomic level is crucial to morphology control and property tuning. Yet, it remains a challenge due to complexity of the growth process and technical limits of modern characterization tools. We report a combinational use of multiple cutting-edge in situ techniques to study the growth process of octahedral Pt3Ni nanoparticles, which reveal the particle growth and facet formation mechanisms. Our studies confirm the formation of octahedral Pt3Ni initiates from Pt nuclei generation, which is followed by continuous Pt reduction that simultaneously catalyzes Ni reduction, resulting in mixed alloy formation with moderate elemental segregation. Carbon monoxide molecules serve as a facet formation modulator and induce Ni segregation to the surface, which inhibits the (111) facet growth and causes the particle shape to evolve from a spherical cluster to an octahedron as the (001) facet continues to grow.more » « less
An official website of the United States government
